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Factorized time correlation diagram analysis of paired causal systems excited
by twin stochastic driving functions
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This work examines the properties and mathematical structure of factorized time corréfat@ndiagram
analysis in a general context. The goal is to extract general principles and analytic behavior that are not tied to
any particular phenomenon in physics. It is hoped that this will provide a basis for expanded use of FTC
diagram analysis beyond its current employment in the study of noisy light-based nonlinear optical spectros-
copy. Furthermore, the concept of indirect correlation in a two-channel system driven by twin stationary
circular Gaussian stochastic inputs is defined and discussed both analytically and through FTC diagram analy-
sis.
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[. INTRODUCTION accompanying physical “tools” associated with the FTC dia-
grams.

Stochastic (randon) processes are ubiquitous in all  This two-channel stationary model has applications in
branches of science. Often one is concerned with the caswtuations where fluctuating amplitude responses are quadra-
where such stochastic processes serve as “inputs” to a detefure (intensity leve] detected and averaged; obvious ex-
ministic causal system to produce a stochastic “output."@mples being in optics, spectroscopy, electronics, and signal
Such a system is characterized by(its general, nonlinear ~ Processing. FTC diagram analysis of this type of system is
response function. Numerous references exist on the subjegmently a useful tool in analyzing certain problems that
of stationary random functionsee, for examplgL]) and the arise in nonlmgar optical spelc.troscopy. In fact, FTC dlagram
nonlinear transformations of such functidi#s3]. Often, one analysis was invented specifically to attack the theoretical

. hallenges of noisy light-based nonlinear optical spectros-
takes some sort of perturbation theory approach to thes%Opy [4]. FTC diagram analysis of noisy light spectroscopy

types of problems. The perturbation series is based on t : SO . .
number of times the driving function acts on the systemh.has provided great physical insight along with computational

Thus, in the standard way, one obtains a series of Succeadvantage[4—10]. This paper is a discussion of FTC dia-

elv hiah der i I . hich b I dt?j'ram analysis outside of the context of noisy light spectros-
sively higher-order integral equations which must be solvedy,,, The goal is to fully abstract the mathematical method-

_In the current paper, factorized time correlatidfilC)  o1qqy of FTC diagram analysis away from any particular
diagram analysip4—10 is applied to a special case in which ppyical problente.g., from noisy light spectroscopyWith
the “input” stochastic function is a superposition of a sta- this accomplished, it is hoped that FTC diagram analysis
tionary Gaussian random functigt1,12 and its displaced mignht find use in future work involving physical phenomena
(time-delayed “twin.” FTC diagram analysis is a technique far removed from noisy light spectroscopy, such that it might
used to determine the properties of material system-respongerve as a common method that links distinct physical phe-
functions(which are deterministic and causdly using sto- nomena. Such a link might provide fruitful cross fertilization
chastic perturbations of the system. The basic system is conof ideas and approaches that could be very beneficial to the
prised of two channel§l and 2 each having din general, study of both noisy light and other phenomena.
different nonlinear response. The system is taken to be sta-
tionar_y as well. That is, the response of the system is invari- || RESPONSE OF THE TWO-CHANNEL SYSTEM
ant with respect to absolute time. The two"outputs” are mul-
tiplied together and stochastically averaged. We are The input for channel 1y(t), of the two-channel system
interested in this average as a function of the time delays a superposition of two stochastic functioRgt) and
between the twin input functions. The primary focus of thisF’(t)=F(t—7) [i.e., F'(t) is “delayed” with respect to
paper is on the second-order/second-order ¢asdoe de- F(t) by an amountr]. That is,V(t)=F(t)+F’(t). The sto-
scribed in detail beloyvbecause this is the lowest order in chastic functionF(t) is taken to be a stationary circular
which the very interesting phenomenon of indirect correla-Gaussian random function of time with its mean equal to
tion arises. Indirect correlation has only been briefly dis-zero. Channel 2 also has inpu{s) (throughout this paper,
cussed in the literature within the context of nonlinear opticatthe variables will be used for time for channel 2 to clearly
spectroscopy5]. The extension to higher orders is straight- distinguish it from channel )l The deterministic stationary
forward and does not pose any fundamental difficulties. Theonlinear response function of channel(dhannel 2 is
primary motivation for dealing specifically with the second- R;(R,). The output “amplitude,” A;(t,7) [A(s,7)] of
order/second-order case rather than taking a more generehannel 1(channel 2 remains a stationary random function
ni’-orderh-order case approach is to give concreteness tof time. One is interested in the stochastic average of the
the mathematical basis of FTC diagram analysis and to thproduct of outputs from the two channels:
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TABLE |. The four-point time correlation functions that arise from multipling out the right-hand side of
Eq. (6). The 16 terms are arbitrarily identified by a capital roman num@dlll ) and a lower case lettéa
or b) for ease of referral in the text.

Term a b

' (F(t)F(t)F(sp)F(s2) (F(tz— 1) F(t)F(sp)F(s2)

I (F(t)F(ti—n)F(spF(sp)) (F(t;— n)F(ty— n)F(s))F(s3))

il (F(t)F(t)F(si— nF(sy)) (F(t;— F(t)F(s;—nF(sy))

v (F(t)F(ti—n)F(s;— 1)F(sp)) (F(t;— )F(t;— n)F(s;— 1)F(s3))
\4 (F(t)F(t)F(spF(s;— 7)) (F(t;— F(t)F(s)F(s;— 7))

Vi (F(t))F(ti—nF(sp)F(s;— 7)) (F(t;— F(t;— n)F(s))F(s;— 7))
Vil (F(tp)F(ty)F(sy—n)F(s;— 7)) (F(t;— F(t)F(s;—7)F(s;— 7))
vill (F(t2)F(ty—7)F(s1— 7)F(s;— 7)) (F(tz= 1)F(ti—n)F(sy— )F(s3— 7))
[(t—s; 7)=(Ay(s, NAt, 7). (1)

s ! sé ! ! ! ! ! !
AP(s, )= J ds; J ds|Ry(s— 585 =S V(SHV(s)),
Since the amplitudes are stationary functions, only the dif- o o 3)
ference betweehands is of importance. The special case of

t=s is particularly important because it represents a direciyhere again distinct time variables from that of channel 1 are
time-average “intensity” measurement. For example, in op-required.

tics, _this would represent light intensity at a point in space, Egyglyation of(A(ZZ)(s, T)A(12)(t' 7)) proceeds as fol-
and in spectroscopy this would represent homodyne detegg,s-
tion of the signal.

It is not feasible to derive a completely closed form for
Ay(t, 7) andA,(s, 7) given a fully general stationary re- (AY?(s, nAP(t, 7))
sponse function. Instead here, we assuimeand A,) may / /
be expanded in a perturbation series based on the number t dt. t dt! s 4 S ds'R Vo
(n,) of times channel 1(channel 2 samples the input: LA dy | ds | dsiRy(t-tpit— 1)

_ (ny) _ (n2)

At D) =Zn Ay (L 7) (Aglls ) =20, A%(L 7). That X Ro(S— 8} ;85— SOVt V() V(S5)V(S)
is, we assume that the contributionAg (andA;,) decreases (4)
sufficiently rapidly as a function of the number of samplings o . .
of the input, such that it is well approximated by the low- TheR's are deterministic so the averaging operation can be
order terms. Furthermore, each successive order introduc®sought inside the integration and applied only to Ys.
smaller corrections té\; (andA,) than the previous order.

(AP(s, AP(t, )
I1l. THE SECOND-ORDER /SECOND-ORDER CASE

The seco.nd—order/se.cond-order case of the general devel- _ jt dtéftz dtifs dséjsz ds|Ry(t—t);th—t])
opment outlined above is taken as the working example. By —w —x —x —w
second-order/second-order, it is meant tha§(t, 7) L, , , , ,

=AP(t, 7) and Ay(s, 7)=A%)(s, 7). Thus, the main XRy(s—85;8,—s) (V(t) V(1) V(s)V(sy)).  (B)

g;latl:ac\ilvglb g\(/aetrt]r?eeovr?jlgfgi?/r;sot(rg(z:ﬁ?ﬁ b:a)er(l: grtﬁe;)gﬁe?:mdol\low' the random driving function can be written more ex-
, ’ g . icitly asV=F+F'. So, the(V(t,)V(t;)V(s5)V(s;)) fac-
input, V(t), acts on the systenfin a perturbative senge Er inyEq (5) becomes V() V(L) V(s2)V(s))
Consequently, '

AP, 1= [ at [ agrioy gotvapve.  VIVIVEVED)

2 :< [F(tz)+F(t;— n][F(t) +F(t;—7)] > ®)

. . . o X[F(s5)+F(sp= [F(s) +F(s;— )]/

This expression states thé(t) first acts at time=t; where-

upon the system propagates according to the response funthe right-hand side is multiplied out to give 16 terms which
tion R, until V(t) acts for the second time at=t,. The  are collected in Table I. Each of these terms i®ar-point
system then propagates until the timdn general, the re- time correlation function

sponse during the intervé) —t; is different than during the For concreteness, we consider one of these 16 terms as an
interval t—t;. The output amplitude for channel 2 is simi- example; term Via:(F(t;)F(t;—7)F(s;)F(s;—7)). For
larly this choice, the appropriate term from E§) is
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TABLE Il. The 48 products of pair correlators arising from applying the Gaussian moment theorem to the four-point time correlation

functions of Table I.
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Term i ii iii

la (F(t)F(t2))(F(s2)F(s1)) (F(spF(t2))(F(sp)F(t1)) (F(s2)F(t2) (F(sp)F(t1)

Ib (F(t)F(ta— )X F(s)F(sy) (F(sp)F(tz— 1) (F(s2)F(ty)) (F(s2)F(t;—= 7)) (F(spF(ty))

a  (F(ty—)F(t)F(s)F(sy) (F(s)F(t)F(sp)F(ti— 7)) (F(sp)F(t) (F(s)F(t1— 7))

b (F(ty—n)F(tz— 7))(F(s2)F(s1) (F(s)F(tz— ) XF(sy)F(ti— 7)) (F(sp)F(ta— ) F(spF(t1— 7))
Ma  (F(t)F(tx) {F(sp)F(s1— 7)) (F(sy—n)F(tx) }F(s)F(t1)) (F(s2)F(t2)(F (s~ 1)F(t1))

Mo (F(tyF(t;— )NF(sp)F(sy— 7)) (F(s1—)F(t;— n))(F(sz)F(t1)) (F(sp)F(t3— n))(F(sy— n)F(t1))
Va  (F(ty— )F(t) F(s)F(s1— 7)) (F(sy—n)F(t) )(F(s)F(t1— 7)) (F(s2)F(t) F(si— n)F(ty— 7))
Vb (F(ty—n)F(tz— 1))(F(sp)F(sy— 7)) (F(sy=F(t;— )XF(s)F(t1— 7)) (F(sp)F(tz= ) )F(si—F(t1— 7))
Va (F(t)F(t)(F(s;— 1)F(sy)) (F(spF () }F(s;— 1)F(t1)) (F(s;= )F(t) XF(sp)F(ty))

Vb (F(t)F(ty—))(F(sz;— 1)F(s1) (F(spF(t;= ))(F(s;— 1)F(ty)) (F(sz— 1)F(t;— 7))(F(spF(t1))
Via  (F(t;—7)F(ty) )(F(s;— 7)F(s1)) (F(spF(t))(F(s;— 1)F(t1—17)) (F(s;— DF(t) XF(sp)F(t— 7))
Vib  (F(t;— 7)F(t;— 7))(F(s;— 7)F(s1)) (F(spF(ta= DXF(s;— n)F(t;— 7)) (F(sz= 1)F(t;— 1))(F(spF(ti— 7))
Vila (F(t)F(ty))}F(s;— 71)F(s1—17)) (F(sy= DF(t) F(s;— n)F(ty)) (F(s;— IF(t) F (s — n)F(ty))
Vilb  (F(ty)F(t3— 1)F(s;— 1)F(sy— 7)) (F(si— n)F(t;— 7))(F(s;— 1) F(t) (F(sz— 1)F(t;— 7))(F(sy— n)F(t1))
Villa- (F(t;— n)F(t5) {F(s;— 1)F(s1— 1)) (F(si= nF(t)XF(sz— 1)F(t1— 7)) (F(sz= n)F(t) }(F(si— F(t1— 7))
Villo - (F(ti—n)F(t;— )(F(s;= DF(si— 7))  (F(si—nF(t;— )(F(s;— F(t3— 7)) (F(s;— n)F(t;— 7))} (F(si— 7)F(ty— 7))

<A(22)(S, T)A(lz)(t, 7))

t t) s sy
=j dtéj dtif dséJ dsiRy(t—t5;t5—t7)

X Ro(s—55;55—51)(F(t5)F(t;— )F(s)F(s5— 7).

vt t)
TV|aiii:f7mdt2f7

s A
dtif dsgf dsjRy(t—t5;t5—t7)
X Ra(s—55;8,—51)(F(s;— 7)F(13))
X(F(s)F(t;— 7). 9

It is convenient to make the change of variabies, t,=t

(7)  —t, t;=ty—t;, S=s, s,=S—S,, s;=s,—5; . (Note that
upon this change of variablds, t;, s,, ands; represent

The f int i lation function in thi i time intervals rather than times of action by the random driv-
e four-point time correlation function in this equation can-irrT]]g function) This gives

not be evaluated conveniently unless we assume the rando
functionsF obey circular Gaussian statisticswith this as-
sumption, all the four-point time correlators can be factor-
ized into a(three-term sum of a product oftwo) two-point
correlators according to the Gaussian moment the¢ddm
13]. Ultimately, this results in 18 3=48 terms(Table ).
Applying the Gaussian moment theorem to term Vla one
obtains

Tviaii = Jo dtzfo dtlfo dszfo ds;Ry(t2;11)Rx(S;2:81)

X(F(t_tz)F(S_Sz_ T))(F(t_tz_tl_ T)

XF(s—8,—8y)). (10

If F is white, i.e., if it is completely random, then
(F(a)F(b))=8(a—b), whereédis the Diracé function. So,

(F(tp)F(ty—1)F(sp)F(s;— 1)) . ;
—(F(t]— DF(tYNF(sy—DF(s)) () (8  Tvaii= fo dtzfo dtlfo dszfo dsiRy(t2:t1)Ra(S2:51)

X 5('[—'[2—S+ 32+ T)(S(t_tz_tl_ T— S+82+ Sl)'

+(F(s)F(t5) {F(s;— 1)F(t;— 7)) (11

(ii)

Performing thes; integration gives

+(F(s;— 1)F(tp) (F(spF(ty— 7). (i)
TVIaiii:f dtzf dtlf ds;Ri(toit)Ro(So; —t+ o+t +7
In the next section, these terms will be evaluated using 0 0 0
FTC diagram analysis, but now, for completeness, we shall
evaluate one of these terms analytically. Focusing on term
one needs to evaluate and performing thes, integration gives

+S_32)5(t_t2_s+82+7), (12)
Tiaiii »
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TABLE HII. The FTC diagrams derived from the 48 terms in Table II.

Term ai aii aiii

bi bii biit

II

111

v

VI

VII

MM M MMM MK

FPr g i dpapap il

SR S S R S

fP g apgrapgpgp g

VIII

TVIaiii = J‘Ovdtzfo dthl(tZ ,tl) Rz(s_t+t2_ T;t1+ 27')
(13

This is the general fornfrestricted by our above assump-
tions). A causalR is implied from the initial definition(Im-
plications of causality irR are discussed in more detail in
Appendix A) For the very common case whert, Eq.(13)
simplifies to

Tyaiii = J'o dtzfo dt;Ry(to;t)Ra(ty— 7ty +27).
(14

IV. FTC DIAGRAMS

factorized time correlator, consists of a template having two
horizontal timelineg and s which represent channels 1 and
2, respectively. Superimposed on each of these timelines are
n,; andn, tick marks—one for each time integration variable
{t{} and{s{}. For the second-order/second-order case stud-
ied here, each line then has two tick marks. A single FTC
diagram can be constructed for each term in Table Il and
these diagrams are collected in Table Ill. Factgair corr-
elatorg of the form (F(a)F(b)), wherea and b are any
given time variable, and(F’(a)F’(b))=(F(a—7)F(b

— 1)), which can be written aé~(a)F (b)) under stationar-

ity, are rindependent. Such terms are represented in the FTC
diagrams by dine segment connecting the two time points
involved in the pair correlator. Factors of the form
(F'(a)F(b)) and(F(a)F’'(b)) arerdependent and are rep-
resented byarrow segments drawn from the tick mark cor-

It is convenient to represent the factorized terms in Eqresponding to the time argument Bfto the tick mark cor-
(10) pictorially as FTC diagrams. The FTC diagrams andresponding to the time argument Bf. So, in Table 1lI, 12
FTC diagram analysis provide a general mechanism foof the 48 FTC diagrams represent completeipdependent
translating the initial expressions to their evaluated form. Interms. These diagrams afeii , Tuwi» Tiwii » T ivaiii » T biii »

general, a FTC diagram, representinm%orderh;h—order

Tviaii s Tviai» @and Tyneisii - The remaining 36 diagrams are
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7 dependent and contribute to the “interesting” features ofshortly see, however, these diagrams are impoitamd, in

the signal. They probe the dynamics of the system. fact, dominant in many situationbecause oidirect corre-
Any pair correlator(line or arrow segment in the FTC |ation. Before addressing indirect correlation more thor-

diagram represents thdirect correlationbetween actions of  oughly, we must first discuss the idea of accumulation.

the driving function. With the appropriate normalization, the

pair correlator is unity when the difference in the time argu- B. Accumulation

ments is zero and it vanishes as the difference in the time

arguments tends to infinity. The rate at which the pair cor- Since the inputs= and F’ are infinitely extended func-

relator vanishes from unity is characterized by the correlatiofions of time, they may be sampled by the system at any

time 7., of the stochastic process. A precise definitionrpfs ~ time. This point is represented analytically by the time-

not needed for this paper—only that the pair correlator isordered integrals appearing in the expressionsAﬁE))r(t) and

appreciable for time differences smaller thenand is neg-  A{?)(s) [Egs.(2) and(3)]. In terms of the FTC diagrams, this

ligible for time differences greater then . Since one of the  means that any correlated pair of tick marks on their respec-

primary interests of this paper is demonstratindirect cor-  tjve timelines may be drawn at any point on their timelines

relation, which can be much greater thap, we shall make  rovided the two tick marks remain synchronized and proper

the simplifying (but not requiregl approximation thatr.  {ime ordering is maintained on both timelines. The strength

—0, i.e., the pair correlators can be replaced withunc- ot the term represented by a given FTC diagram is deter-

tions. This is the same assumption that was used in the presine py the ability of its constituent pair correlatdeeg-

vious section to provide thié functlon.s that assisted the mentg to accumulateover the response function envelopes

integration during the analytic calculation. for the two timelines. This concept is illustrated by Fig. 1,

Assoga;ed W'th“ FTC ”d|agram analysis are s_everal P vhich shows several examples from the set of FTC diagrams
mary principles or “tools.” We shall show that indirect cor-

relation follows as a “secondary” principle from two pri- n Tl'i?al?o”ltlnlo of a given diagram becomes very important
mary principles of FTC diagram analysis—namely, hology 9 g y Imp

) . ; 7" when considering accumulation. Notice in Table Il that there
synchronizationand accumulation(now to be discussed in . : : . : .
i . are three basic topologies manifest in this set of FTC dia-
turn). Synchronization and accumulation act together to de- . . .
rams. Columns ai and bi all have two intrachannel correla-

termine the relative strength of the terms represented diaﬁons Columns aii and bii have “crossed” interchannel to-
grammatically by the FTC diagrams. '

pology, where the first actioftick mark) on thet timeline is
correlated with the second action on thémeline and vice
A. Synchronization versa. Finally, columns aiii and biii have “uncrossed” inter-
channel topology, where the first and second actions om the
timeline are correlated with the first and second actions on
the s timeline respectively. Topologically, accumulation is
represented by the ability of a tick matkr in this case, a
correlated pair of tick markgo “slide along the timeline.”

For the intrachannel FTC diagranfsolumns ai and bi,

Any given pair correlator “synchronizes” its two time
arguments to within roughly, (otherwise the correlator van-
ishes. Under our current approximation of&function cor-
relator (r.=0), the two time arguments are exactly synchro-
nized. For example, the pair correlatdt(s;)F(t;)) forcest;

(_on thet tim_eline) to be coincident withs, (on thestime-  hara is full and independent accumulation over the ih-
line). Likewise the pair correlatokF’(s)F(t))=(F(Sx  terval”ie., the interval from the second tick mark to the end
—7)F(t)) forcest, to be comc_ldent WithB, — 7. of the timeling. We will generally refer to the interval from
The system response function can serve to soften the SYMie second tick mark forward in time as the, “interval”
chronization condition on a single timelirentrachanne. regardless of which channel we are referring to. Likewise
That is, for any noninstantaneous response function, a givelje \il| refer to the interval between the tick marks as the
channel of the system carries a “memory” of the stochastic. t, interval” regardless of channel. Theimeline pair accu-
input. This memory can allow for the direct correlation be'mulates independently from tretimeline pair[Fig. 1(a)].
tween the time arguments to be longer thgnand charac- owever, no accumulation occurs over theinterval. In
terized bY th? decay of the sys_tem memory. And this type 0Eontrast, the uncrossed FTC diagrams have correlated accu-
synchronization allows for a direct measurement of the sys: ulation over both the, andt, intervals. Thet timeline and
tem response function. The FTC diagrams in columns ai an e s timeline accumulation are not independent of one an-

bi that contain at least one arrow segment allow for the dire%ther[Fig 1(0)]. Finally, the crossed FTC diagrams are the
probing of the system since the independent pair correlatorg, .t topologically constrained. Here, full-correlated accu-

are intrachannel. ; ;
o . . mulation can take place over the interval, but only con-

Th? ”.“alo”ty of the FTC Q|agrams in Table 11l do no't fined correlated accumulation takes place overtthater-
contain intrachannel correlations, however. The FTC dla-val This confined accumulation will be treated more
grams In columps an, ai, bii, anq biii contain onlgter- explicitly in the discussion of indirect correlation.
channelcorrelations, since all the line and arrow segments
connect a tick mark on thetimeline to a tick mark on the
timeline. At first glance, it appears that these diagrams would
be of little interest because it would seem that these correla- With the concepts of synchronization and accumulation in
tions do not probe the system response function. As we shalland, one is in position to understand the interesting phe-

C. Indirect correlation
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a) £, accum, nomenon of indirect correlation that arises in this second-
“—> order/second-order example. The basic principle behind the
a 4 ability of twin stochastic perturbative driving functions to

' probe system dynamics is that the stochastic function is im-

pressed upon the system. That is, the system “remembers”
this stochastic function such that it can facilitate delayed cor-
relation with the twin stochastic function. The “memory” of
T _ the first function fades on the order of the decay of the sys-
- s =1 tem response function. This provides a mechanism for ex-
m' tracting the system response function information. Direct
: correlation of the first and second interaction tiniigsandt,
b) £ acoum ors; a_mdsé) is only a_vailable to the diagrams of columns ai
‘2 > ) and bi in Table Ill. It is clear that these intrachannel correla-
T t tions will provide response function information by the
mechanism just mentioned. The remaining diagraow-
umns aii, aiii, bii, and biii appear, at first glance, to be
useless for obtaining response function information because
there is no direct correlation betwegnandt; or s; ands; .
This is not the case, however, because the first and second
" s =1 interaction times on a given timeline are indirectly corre-
) t, accum. t, accum. lated. Generally, indirect correlation is a consequence of the
C +—> +—> ¢ direct correlation of interchannel pairs of tick marks and the
topological constraints of the given FTC diagram. That is,
one interaction timea tick mark on the FTC diagranon
channel 1 is directly correlated to an interaction time on
channel 2. The other interaction time on channel 2 is topo-
logically constrained to occur either only before or only after
s =1 (depending on the FTC diagrarthis interaction. The other
interaction is in turn directly correlated with the remaining
interaction on channel 1. In this roundabdaott indirect) way
FIG. 1. llustration of accumulation for each of the three basicth® two intrachannel interactions on channelahd the two
topologies of the FTC diagramé) intrachannel(b) interchannel 0N channel 2are indeed correlated and these types of FTC
crossed, anéc) interchannel uncrossed. The dashed vertical line ordiagrams can provide response function information. For
the right-most side of the FTC diagram is present to emphasize theoncreteness we consider two examples.
case whert=s, which is used for simplicity in the text. FTC dia-  As a first example, consider FTC diagrd,;; as shown
grams for the more general case whers are presented in Appen- in Fig. 2. The two arrowed segments representing these
dix B. (a) For the intrachannel FTC diagrams, the two tick marks -dependent pair correlators do not inters@aterchannel
are synchronized by th&function correlation of the random inputs. uncrossed segment topolggyn this particular example, the
The two tick marks on each of the timelines are drawn with a slighffirst interaction(tick mark on channel 1 is directly corre-
separation to aid the eye. Actually, they would be superimposed otated with the first interaction on channel 2 and the second
one another for this diagram. The two tick marks on each timelindnteraction on channel 1 is directly correlated with the sec-
cannot change their relative position—they are “locked” togetherond interaction on channel 2. The topological constraints of
as a correlated pair. So the interval (between the tick markss this FTC diagram forbid the arrowed segments representing
not accumulated over. However, the correlated pair can “slide alonghe direct correlations from crossing. This imposes a certain
the timeline” as a unit. Thus, the relative position of the pair with hahavior on the term represented by this FTC diagram that
respect to the end of the timeline can change. Thetjufiterval on — 516,y5 one to obtain response function information through
thet timeline, and independently, on tisgimeline is accumulated indirect correlation as we shall now see. When the time dis-
over.(b) The crossed FTC diagrams have a more confined t0p°|°gyplacementr is zero, as in Fig. @), there is full (synchro-
Since the first tick mark on the timeline is correlated with the nized accumulatio;‘l over thé re’sponse functions of both
second on thetimeline and vice versa, all four tick marks must be S .
coincident. So, no accumulation over thg interval is allowed. channels res_ultl_ng in the maximal yalue for the term_ repre-
sented by this diagram. Wher 0 [Fig. 2(b)], synchroniza-

Furthermore, accumulation over thg interval does not occur in- > . . )
dependently on the two channel(s) For the uncrossed FTC dia- tion forces the two tick marks on thetimeline apart by at

grams, the first tick mark on thgimeline is correlated with the first  [€@St 2, thus limiting the accumulation over the response
on thes timeline; similarly for the second tick marks. Thus, the function of channel 2 during thg interval. Full accumula-
relative position of the first and second tick marks can vary. Thistion remains available over ttg interval on thes timeline.
allows for accumulation over thi interval, where the accumula- Additionally, accumulation is limited over thg interval on

tion is synchronized with the, interval accumulation on the channel 1, but full accumulation is available over then-

s timeline. Synchronized accumulation also occurs over the terval. The value of the term represented by the FTC diagram
interval. is necessarily less than that wher0. Similarly for 7<0,
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a) a)

¢ ¢
y t ,r t
Yis=1¢ Y s=t l
s=1 1 s=1
b)
Tt , . t b)
; / 27 t Tt
T s=1 T T s=1 e
2 ‘ , , t T S =1 ot S =H
> FIG. 3. Indirect correlation in crossed FTC diagrart@.When
7=0, this case is exactly equivalent to thendependent crossed
c=t . } =t FTC diagramg(line segments onjyand so the value of the term

represented by the diagram is ze(b) For >0, the topological

FIG. 2. Indirect correlation in uncrossed FTC diagrart®.  constraint is relaxed as the tick marks on both thieneline ands
When 7=0, the first tick mark on the timeline is exactly coinci-  timeline can now move relative to one another by up to This
dent with the first tick mark on the timeline; similarly for the  allows for some accumulation over theinterval. Full accumula-
second tick marks. So the arrow segments are drawn vertigalty ~ tion is available over thé, interval. So, one generally expects the
could, in fact, be replaced with line segmentsull synchronized  contribution from crossed FTC diagrams to initially increase with
accumulation occurs over both the and t, intervals. (b) For 7 increasing| 7.

>0, the first tick mark on the timeline is now displaced by a the t lated pai f tick K be simult
magnituder from the first tick mark on the timeline; similarly, but € two correlated pairs of ick marks can never be simufta-

oppositely, for the second tick marks. This means that the two ticl{1eOUSIy synchronized. Thi§ also peruces a zero value for
marks on thestimeline can come no closer them &part. Likewise, the term represented by this FTC diagram fer0. On the

the second tick marks on theimeline can come no closer than  Other hand, forr>0 [Fig. 3(b)], synchronization of both of

away from the end of the timeline. Therefore, accumulation oveithe pair correlators can be simultaneously satisfied. Now ac-
both thet; andt, intervals is diminished compared to wher 0. cumulation over thel interval is limited to no more than72
(c) For <0, the situation is very similar to wheri>0, however, on both thet ands timelines. However, unlike accumulation
now the two tick marks on thetimeline are forced to be at least 2 in the uncrossed case, separation of tick marks ot timee-
apart and the second tick mark on thémeline is at least- away  line forces the tick marks on thetimeline closer together
from the end of the timeline. So, one generally expects a decrease and vice versa. So, there are two basic ways indirect corre-
the strength of the term represented by uncrossed FTC diagrams kgtion is manifest in this two-channel systefi): tick marks
|7 is increased. are forced apart by at least som@lependent intervalnot

) o necessarily 2) for the uncrossed segment topology(io) the
the two tlc;k marks on thée timeline are forced apart by at tick marks are confined to be no more than some
least 2r [Fig. 2(c)]. Now the roles of channel 1 and channel ;_dependent interval apart as for the crossed segment dia-
2 are opposite that of the>0 case. Whelw] is large enough grams.
that the response function of channel 1 or 2 has fully de-

cayed, the value of the term represented by the FTC diagram V. ETC DIAGRAM ANALYSIS
vanishes. '
Now consider FTC diagranTy,; as shown in Fig. 3. The general ideas of FTC diagram analysis discussed

Here, the two arrowed segments representing thesabove can now be applied to the current system such that a
7-dependent pair correlators cross each oflsenssed seg- mapping is made from the FTC diagrams to the general so-
ment topology. In this particular example, the first interac- lution for this second-order/second-order case. A very com-
tion on channel 1 is correlated to the second interaction omon situation is the case whetre s (e.g., homodyne detec-
channel 2 and the second interaction on channel 1 is corréion in spectroscopy and light intensity in opticsVe shall
lated to the first interaction on channel 2. The topologicalwork with this case simply as a matter of convenience. The
constraints of this FTC diagram require that the arrowed segsituation where #s poses no fundamental problem but the
ments representing direct correlations remain crossed. WhefTC diagram analysis becomes unnecessarily clouded by the
the time displacementis zero[Fig. 3(@)] there is necessarily additional complication. FTC diagram analysis for the case
no accumulationlunder our approximation of @function  wheret#s is briefly addressed in Appendix B by way of
time correlatoy over thet, interval for both channels. This example.

results in a value of zero for the term represented by this There are two important properties of the signal that can
FTC diagram. Wherr<0, preservation of the proper time be obtained immediately from the set of FTC diagrams. The
ordering of the samplings forbids any synchronization sincdirst property isT symmetry. For the set of FTC diagrams in
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TABLE IV. The general expressions for the FTC diagrams having intrachannel top@olynns ai and

bi of Table IlI).
Term >0 7<0
Tiai Jodtafgds;Ry(t2; 0)R,(s,; 0) Jodtafgds;Ry(t2; 0)Ry(s,; 0)
Tipi Jodtgds,Ry (12 T)R,(S,; 0) 0
Thiai 0 Jodtz[gdS;Ry (155 — 7)Ry(S;; 0)
Tiibi Jodt[gdsRy(t5; 0)Ry(S;; 0) Jodtafgds;Ry(t2; 0)Ry(s,; 0)
Thitai 0 Jodta[gdS;Ry (155 0)Ry(Sp; —7)
Thiibia 0 0
Thvai 0 JodtafgdsRy (o5 — T)R(S;; — 7)
Tivpi 0 JodtafgdS;Ry(t2; 0)Ry(Sz; — 7)
Tai JodtafgdsRy(t2; 0)Ry(sSz; 7) 0
Typi Jodt[gdSRy(to; )Ry(s,; 7) 0
Tyaia 0 0
Tyii JodtafgdS;Ry(t2; 0)R,(S;; 7) 0
Tvitai Jodtz[gdS;Ry(t5; 0)R,(S;; 0) JodtafgdS;Ry(t; 0)Ry(S;; 0)
Tvipi Jodtafgds;Ry(t2; T)Ry(S,; 0) 0
Tviniai 0 JodtafdS;Ry(t2; — 7)Ry(S2; 0)
Tviiibi Jodtafgds;Ry(t2; 0)R,(s,; 0) Jodtafgds;Ry(t2; 0)Ry(s,; 0)

#Precisely atr=0 these terms are equivalent Te;. The discontinuity is a consequence of théunction
correlation function for the random input functions.

Table Ill, one sees that each diagram is paired with another Now one can apply the principles of FTC diagram analy-
with respect to inversion of the direction of the arrow; for sis to obtain the general analytic structure of the terms rep-
example T, and Ty or Tywii and Ty, etc. From the resented by the diagrams. Turning first to the intrachannel
topology of the FTC diagrams, for this second order/secondFTC diagrams of columns ai and bi in Table Ill, we have
order case, the signal must be a symmetric functionr of stated that full and independent accumulation is available
regardless of the choice of response function. One mighbver thet, intervals on both channels. Analytically, this
have expected generalsymmetry from the structure of the statement implies that two separate integrations must be per-
driving force, i.e., the roles df andF’ should be symmet- formed. Furthermore, no integration is done over thén-

ric. While the present second-order/second-order case did intervals. So the general analytic structure of the intrachannel
deed turn out to yield a signal that was symmetricrinhis ~ FTC diagrams is

cannot always be assumed for genen§lorderhi-order
cases. The original work using FTC diagram analysis and the
very same driving function to model a degenerate four-wave
mixing process in nonlinear optical spectroscopy, which is of h d 0 for i tar (—7) f
the third-order/third-order type, shows an asymmetric signaYV erex andy are 0 for line segments; (—7) for arrows

f “dt, f “ds,Ri(ty; XR(Ss: Y), (15)
0 0

[4] pointing to the rightleft) and 7>0(7<0). The value of the
A second property is the dynamic range or peak to backi€m represented by the FTC diagram is zero when at least

. R . ) one arrow points to the righleft) and 7<<0(7>0). The
9rgl;zg)((::)ntragirglz)A(l')tzls is so:)r;wpp\g/)(t:‘e ra:;?)mgorgz,ig results for all the intrachannel diagrams are listed in Table
—YIALLTE 2 \S T 1 \LT=%)). A

ering the set of FTC diagrams in Table IIl, one sees that 12" "t the crossed FTC diagrams we know, from the general
of the 48 diagrams are-independentlines only. Of these  yisqssion in the previous section, that at most a given dia-

12 diagrams, there are three tygigsrachannel, interchannel .oy il represent a term having a nonzero value for either
grossed, and mterchanr]gl gncr(:]s)se:dflzh hav:cng a fg_urfold >0 or 7<0. Correlated accumulation is available over the
egeneracy. Now, considering the full set of FTC |agramstz intervals. The accumulation is limited, however, over the

at 7=0 all the arrows in the~dependent diagrams can be " interval. Thus, the analytic structure of these diagrams

drawn as lines. Again, there are three types, but now th hen the terms thev represent are not equal to)gsro
degeneracy is 1@ncluding therindependent diagramsAs B yrep g )

r—oo, all the arrowed diagrams vanish. Thus, the peak to
background contrast ratio is 16:4 or 4:1. Like theymme-

try, this is independent of the choice of the response function.
Also like the 7 symmetry, other cases such as third-orderiwhereu= = 7 or =27, x=u—t, andy, andy, are appropri-
third-order examples can exhibit different peak-to-ate time argumentg§too varied to conveniently summarize
background contrast ratios than for this second-order/secontiere. The results for each of the crossed FTC diagrams are
order case. listed in Table V.

J:dtzfo dt;R1(y1; tp)Ra(y2; X), (16)
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TABLE V. General expressions for the crossed FTC diagrémetumns aii and bii of Table I)I To condense the table, l18,,=t,
+tl andt215t2—t1.

Term 0 <0

Tai 0 0

Tibii Jodtf 5dt Ry (to; t)Ra(Tpy; 7—11) 0

Trai 0 Jodtaf o At Ry (tor— 75 t1) Ro(tz; —7—1y)
Tiibi 0 0

Tinai 0 Jodtaf o At Ry (o) t1)Ro(T215 — 7—1ty)
Thibii 0 0

Thaie 0 J5dtof o 2 dt Ry (ty; t)Ry(Tort 75 — 27— ty)
Tivei 0 Jodtaf g At Ry (tz1— 7 t1) Ro(ty; — 7—1y)
Toai [odtfidt Ry (tor+ 75 t)Ry(ty; 7—tg) 0

Typiia fgdtzfgfdthl(tz; t))Ry(To— 7, 27— 14) 0

Tviai 0 0

Tuii Jodtz2fodti Ry (t2; t1)Ro(T21; 7—ty) 0

Tyiaii 0 0

Tvisii JodtzfodtiRy(tor+ 75 1) Ry(To; 7—ty) 0

Tuttas 0 [5dt2f "Ry (to; )Ry(Tor: —7—ty)
Tynibi 0 0

dCausality of the response functions was used to simplify the expression to a single term. FTC diagram analysis would more naturally give

© B © *2r
fdlzj dtRy(tr1 = 75t Ry(ty; 127*t1)+‘[ dtZJ dtyRy(ty; t)RaA(ToF 7 £27—1y).
0 0 0 *7

Uncrossed FTC diagrams have correlated accumulation
over thet; andt, intervals. For these diagrams, it is most
convenient to associate the accumulation with full integra-
tion from zero to infinity over both thg andt, intervals. In ) .
doing this, however, one must account for the limitations ofWhere_Xl’ Y1, Xz, andy, are the appropriate time argu-
the accumulation by appropriately choosing the arguments o’Pe”.‘Sf too varl_ed to conveniently summarize here, .bUt the
the response function. So the general analytic structure of thex‘)IICIt expressions for each of the uncrossed FTC diagrams

d ETC di ) Sre collected in Table V.
uncrosse lagrams 1S The most natural way to analyze FTC diagrams is to treat

jwdtzfocdthl(Xli Y1)Ra(Xz2; Y2), (17)
0 0

TABLE VI. General expressions for the uncrossed FTC diagrams of Tabledlimns aiii and biii.

Term =0 7<0

Taii JodtafodtyRy(ty; t1)Ro(ts; 1) JodtfodtiR(to; t1)Ry(t5; ty)

T i JodtafodtyRy(ta; t+ 7)Ry(ta+ 75 ty) JodtafodtyRy(t,— 75 t1) Ro(ty; ty— 7)
Taiii JodtafgdtyRy(ty; ty)Ro(ty; ty+ 1) JodtfodtiR(to; ty— 7)Ry(t5; ty)
Tibii JodtafodtyRy(to; 1) Ro(ta+ 75 ty) JodtafodtyRy(t,— 75 t1) Ro(t; ty)
Tiiraii JodtafgdtyRy(ty; ty+ 7)Ry(t; ty) JodtafgdtyRy(ts; t)Ro(ty; ty—7)
Tiiwii JodtafodtyRy(to; 1+ 27)Ry(to+ 75 ty) JodtafodtyRy(t,— 7; t1)Ro(ty; t1—27)
T vaiii Jodtafodt Ry (ta; t)Ro(ts; ty) JodtafodtyRy(to; th)Ro(t2; ty)

Tivpii JodtafodtiR(to; ty+ T)Ry(to+ 75 ty) JodtafodtyRy(t,— 75 t1) Ro(ty; t;— 7)
Toaiii JodtafodtyRy(ta+ 7 t) Ry(ty; ty+7) JodtafodtiRy(to; t1— 1) Ro(to— 75 tg)
Tupii JodtfodtiR(to; t1)Ry(t5; 1) JodtfodtiR(to; t1) Ry (15 ty)

Tviaii JodtafodtyRy(to+ 75 t) Ro(to; t+27) JodtafodtyRy(to; t1— 1) Ro(to— 75 ty)
Tyiii JodtafodtyRy(ty; ty)Ro(ty; ty+ 1) JodtafodtyRy(ts; ty—27)Ry(t,; tg)
Tyiaii Jodtafodty Ry (to+ 75 t1) Ro(t; ty) JodtafodtiRy(to; 1) Ro(t,— 75 ty)
Tvipii JodtafgdtyRy(ts; t+ T)Ry(t2; ty) JodtafodtyRy(ts; t)Ro(ty; ti—7)
Tyiaii JodtafodtyRy(to+ 75 t1) Ro(ty; ty+ 7) JodtafodtyRy(to; ty— 7)Ro(to— 75 tg)
Tvinii JodtafgdtyRy(ty; ty)Ro(ts; 1) JodtfodtiR(to; t1)Ry(t5; ty)
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TABLE VII. Expressions for the specific example of the re- mate the process. The disadvantage of the FTC diagram ap-

sponse function described in EQ.9). proach is that each diagram has two cases0 and 7<0.
: - This is compounded when considering the more general situ-
Term ! I m ation whent+#s (see Appendix B
la 0 It is interesting to investigate how each of the different
1 1 :
= — terms represented by FTC diagrams probe the response func-
9 49 tions. As stated above, the intrachannel FTC diagrésob
lb e’ e’ e T umns ai and bi of Table Ijidirectly probe the response func-
g 29 49 tions; more precisely, the response during theinterval.
lla 0 0 il Since full accumulation is always available over thénter-
g val, it cannot be probgd as a func.tion of DiagramsT
b 1 0 oot TUai, Tyibi » and Ty, isolate thetq mterval for chgnnel 1.
- i DiagramsT 5, Tivbis Twai,» @and Ty isolate thet, interval
g 49 for channel 2. Finally, diagram3,, and Ty, simulta-
llia 0 0 i neously probe channel 1 and 2. All the crossed FTC dia-
4g grams isolate the; interval but not independently on each
b 0 0 e (2+gT channel. Only the uncrossed FTC diagrams are capable of
49 prqbing thet, interval. Diagram§|,b_m and Ty i ?solate the
Va 0 0 1 t, interval. Furthermpre, for>0 .dlagramT,,bm isolatest,
- on channel 1 and diagray,,; isolatest, on channel 2.
49 (For 7<0, the roles of these diagrams are revens@&ia-
Vb 0 0 e ot 9ramsT i, Tiiii » Tivbii + Tvaiii s Tviaiii » @Nd Ty Simul-
4g taneously probe thg andt, intervals.
Va 0 e’TT e_(1+g)T
29 4g A. Example
Vb e 2T e 2T 1 As an example, consider the system in which the response
o g 4g functions are
—T —(2+g)T
" %Z i : (499) Ri(ty;t) =0(t;)O(ty)e” 7the™ 72", (18
Vib e’ e e’ Ro(S2:51) = 0(5,)O(sp)e” 11510 72%,
g 29 49 . .
Vila 1 0 o aT (Note: both channel 1 and channel 2 have identical response
— T functions which we simply calR.) Since causality is auto-
g . 9 matically included in the FTC diagram derived expressions,
Vil e eT e one can drop the step-function factors. Furthermore, the re-
g 29 49 sponse function can be nondimensionalized by working in
Villa 0 0 g (ot units of, say,y, and definingT;= y4t;, g=v>/v4. Then,
Vil L 0 419 R=e Tig 972, (19
g 49 The expressions for each of the FTC diagrams yor=T

>0 are listed in Table VII. It is interesting to consider the
relative strengths of the different topologies of the diagrams.
The intrachannel diagramsolumn i of Table VI) are pro-

the >0 and 7<0 cases separately. The direct analyticalportional to 1¢?, the crossed diagram{solumn ii) are pro-
calculation of the terms associated with the diagrams doegortional toT/g and the uncrossed diagrarfe®lumn iii) are

not naturally treat the cases separately. At first glance, it iproportional to 1g. Considering the crossed diagrams first,
not obvious that the two results are equivalent. In fact, forone sees that the expressions go to zerd-a$) as generally
noncausal response functions, they are not equivalent, bexpected from the principles of FTC diagram analysis. Now,
FTC diagrams are not valid in noncausal situations. Theconsidering the intrachannel and uncrossed diagrams, the ra-
equivalence of these two methods of obtaining the final forntio of the uncrossed to intrachannel terms isg)1(1/g?)

of the expressions is shown in Appendix A. One nice feature=g=y,/7y,. So we see that if»> vy, the uncrossed terms
of the form of the expression arising from FTC analysis isdominate, whereas if,< vy, the intrachannel terms domi-
that causality is automatically built in. So, when an explicitnate. This is what is expected from the standpoint of accu-
form of the response function is chosen, one need not explionulation. The intrachannel diagrams have two full accumu-
itly include the step function as a factor in the response funclations over the, interval, whereas the uncrossed diagrams
tion. This is beneficial when evaluating particular cases usindpave one accumulation each over theandt, intervals. So
computer algebra software such ®STHEMATICA to auto- if the decay of the response is faster during thenterval
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(v2>7v4) then one expects the intrachannel diagrams to bén.b., the lower limit of the, integration can be set te 27).
disadvantaged. Conversely, if the decay is slowgi<{y,) With a simple change of variables one can write
the intrachannel diagrams have the advantage of greater tot?l

accumulation. Viail
VI. CONCLUS'ON JO dtzJO dthl(t2+ ’T;tl)Rz(tz; tl+ 27')7 ’T>O
In this paper, the properties and mathematical structure of - o o '
factorized time correlatioGFTC) diagram analysis were ex- fo dtzfo dtiR(ty; t1—27)Ra(ty—7; ty), 7<0
amined in a generalized context. That is, the general prin-
ciples and analytic behavior were not explicitly or implicitly (A3)

tied to any particular phenomenon in physiegher than

driven causal systemsThe specific case of second order/ Which agrees precisely with the expression obtained from
second order was used as the working example in order toTC diagram analysi¢Table VI).

give a concreteness to the general principles and procedures

of FTC diagram analysis. It was shown that the topological APPENDIX B
structure of the FTC diagrams yields much information ) _ ) )

namic range, and general analytic structure of the terms the@implified case ofs=t was used. This was a convenience
diagrams represent. The very interesting phenomenon of ifather than a necessity. In this Appendix, the cass7of is
direct correlation was presented. The FTC diagrams providefiriefly addressed by way of an example, namely, &g -
a topological interpretation of this phenomenon that isFrom a direct calculation standpoint, the case wiset
readily seen. It is hoped that this paper will provide a basis

for expanded use of FTC diagram analysis. Currently, FTC a)

diagram analysis has only been exploited in the study of T— s+¢

noisy light-based nonlinear optical spectroscopy. Expansion ] . !

of its use into other areas of physics could provide very

beneficial cross fertilization of ideas and deepened insight !

into these areas.
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APPENDIX A

In the text, it was noted that FTC diagram analysis yields
expressions in a different from than what naturally arises
from the direct analytical calculation. In this Appendix, we
show the equivalence of these two methods of obtaining the C)
final expression. As in the text, we take as the example term
TVIaiii
Beginning with Eq.(13), we consider the two cases
>0 and <0 and the situation whers=t (Appendix B
addresses the more general cases#ft). One now must
specifically invoke the causal nature Rf This implies

! 27 s—t—17 °

Tviaiii = JT dt2fo dtRy(tz; t)Re(tz— 75 1y +27), 7>0 FIG. 4. FTC diagramiTy,,;; for the case whet#s and 7>0.
(A1) (@), (b) s—t<7. Here, the accumulation over thg interval on
channel 1 is restricted in that the second tick mark ort tiraeline
(n.b., the lower limit of the, integration can be set tf and can be no closer to the end of the timeline thans+t. Full ac-
- " cumulation over the, interval on channel 2 is allowedc) s—t
Tyiaii =f dtzf dt;Ry(ty; t)Ry(to— 7 t;+27), <. In this case, full accumulation is allowed over theinterval

0 —27 on channel 1 but is restricted on channel 2. The second tick mark on

the s timeline can be no closer thas+t— 7 from the end of the
7<0 (A2)  timeline.
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does not need to be treated in any special manner. It ariséSgure 4c) shows the case wheee-t> 7. In this case, full
naturally as in Eq(13). From a FTC diagram standpoint, accumulation can take place over thginterval in thet
however,s#t has topological significance. Direct prediction timeline, but accumulation over that same interval on ghe

of the expression represented by the diagrams involves coftimeline is diminished. So, for the—t>7>0 situation one
sidering two cases for>0 and two cases for<0. We shall  predicts

focus ont>0 for FTC diagranily,,;; - Here, one must con-
sider the case whee—t<r and the case whea—t>r7.
Figure 4 illustrates these two cases. Figures dnd 4b) are

both cases whes—t<r. One sees that the accumulation ” * . .

over thet, interval on thet timeline is effected bys#t. TV'ai“_jo dtzfo ARty LR (¥ St th+27).
Since 7 exceedss—t, accumulation over thé, interval on (B2)
the s timeline remains full. Thus, one predicts, fer-t<r

and >0,

. . As with thes=t case, the collection of expressions can be
T :f dt f dt,Ry(t,+ 7— s+t t)R(tr: t;+27). shown to be equivalent to Eq13) by _epr|C|tIy con5|der|ng_
VIl Jo 72 ) T ot r UR:(t2; 1y +27) the causal nature d® and making simple changes of vari-
(B1)  ables as was done in Appendix A.
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