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Factorized time correlation diagram analysis of paired causal systems excited
by twin stochastic driving functions
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This work examines the properties and mathematical structure of factorized time correlation~FTC! diagram
analysis in a general context. The goal is to extract general principles and analytic behavior that are not tied to
any particular phenomenon in physics. It is hoped that this will provide a basis for expanded use of FTC
diagram analysis beyond its current employment in the study of noisy light-based nonlinear optical spectros-
copy. Furthermore, the concept of indirect correlation in a two-channel system driven by twin stationary
circular Gaussian stochastic inputs is defined and discussed both analytically and through FTC diagram analy-
sis.
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I. INTRODUCTION

Stochastic ~random! processes are ubiquitous in a
branches of science. Often one is concerned with the c
where such stochastic processes serve as ‘‘inputs’’ to a d
ministic causal system to produce a stochastic ‘‘outpu
Such a system is characterized by its~in general, nonlinear!
response function. Numerous references exist on the su
of stationary random functions~see, for example@1#! and the
nonlinear transformations of such functions@2,3#. Often, one
takes some sort of perturbation theory approach to th
types of problems. The perturbation series is based on
number of times the driving function acts on the syste
Thus, in the standard way, one obtains a series of suc
sively higher-order integral equations which must be solv

In the current paper, factorized time correlation~FTC!
diagram analysis@4–10# is applied to a special case in whic
the ‘‘input’’ stochastic function is a superposition of a st
tionary Gaussian random function@11,12# and its displaced
~time-delayed! ‘‘twin.’’ FTC diagram analysis is a technique
used to determine the properties of material system-resp
functions~which are deterministic and causal! by using sto-
chastic perturbations of the system. The basic system is c
prised of two channels~1 and 2! each having a~in general,
different! nonlinear response. The system is taken to be
tionary as well. That is, the response of the system is inv
ant with respect to absolute time. The two‘‘outputs’’ are m
tiplied together and stochastically averaged. We
interested in this average as a function of the time de
between the twin input functions. The primary focus of th
paper is on the second-order/second-order case~to be de-
scribed in detail below! because this is the lowest order
which the very interesting phenomenon of indirect corre
tion arises. Indirect correlation has only been briefly d
cussed in the literature within the context of nonlinear opti
spectroscopy@5#. The extension to higher orders is straigh
forward and does not pose any fundamental difficulties. T
primary motivation for dealing specifically with the secon
order/second-order case rather than taking a more gen
n1

th-order/n2
th-order case approach is to give concretenes

the mathematical basis of FTC diagram analysis and to
1063-651X/2002/65~2!/026142~12!/$20.00 65 0261
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accompanying physical ‘‘tools’’ associated with the FTC d
grams.

This two-channel stationary model has applications
situations where fluctuating amplitude responses are qua
ture ~intensity level! detected and averaged; obvious e
amples being in optics, spectroscopy, electronics, and si
processing. FTC diagram analysis of this type of system
currently a useful tool in analyzing certain problems th
arise in nonlinear optical spectroscopy. In fact, FTC diagr
analysis was invented specifically to attack the theoret
challenges of noisy light-based nonlinear optical spectr
copy @4#. FTC diagram analysis of noisy light spectrosco
has provided great physical insight along with computatio
advantage@4–10#. This paper is a discussion of FTC dia
gram analysis outside of the context of noisy light spectr
copy. The goal is to fully abstract the mathematical meth
ology of FTC diagram analysis away from any particu
physical problem~e.g., from noisy light spectroscopy!. With
this accomplished, it is hoped that FTC diagram analy
might find use in future work involving physical phenome
far removed from noisy light spectroscopy, such that it mig
serve as a common method that links distinct physical p
nomena. Such a link might provide fruitful cross fertilizatio
of ideas and approaches that could be very beneficial to
study of both noisy light and other phenomena.

II. RESPONSE OF THE TWO-CHANNEL SYSTEM

The input for channel 1,V(t), of the two-channel system
is a superposition of two stochastic functionsF(t) and
F8(t)[F(t2t) @i.e., F8(t) is ‘‘delayed’’ with respect to
F(t) by an amountt#. That is,V(t)5F(t)1F8(t). The sto-
chastic functionF(t) is taken to be a stationary circula
Gaussian random function of time with its mean equal
zero. Channel 2 also has inputV(s) ~throughout this paper
the variables will be used for time for channel 2 to clearl
distinguish it from channel 1!. The deterministic stationary
nonlinear response function of channel 1~channel 2! is
R1(R2). The output ‘‘amplitude,’’ A1(t,t) @A2(s,t)# of
channel 1~channel 2! remains a stationary random functio
of time. One is interested in the stochastic average of
product of outputs from the two channels:
©2002 The American Physical Society42-1
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TABLE I. The four-point time correlation functions that arise from multipling out the right-hand sid
Eq. ~6!. The 16 terms are arbitrarily identified by a capital roman numeral~I-VIII ! and a lower case letter~a
or b! for ease of referral in the text.

Term a b

I ^F(t28)F(t18)F(s18)F(s28)& ^F(t282t)F(t18)F(s18)F(s28)&
II ^F(t28)F(t182t)F(s18)F(s28)& ^F(t282t)F(t182t)F(s18)F(s28)&
III ^F(t28)F(t18)F(s182t)F(s28)& ^F(t282t)F(t18)F(s182t)F(s28)&
IV ^F(t28)F(t182t)F(s182t)F(s28)& ^F(t282t)F(t182t)F(s182t)F(s28)&
V ^F(t28)F(t18)F(s18)F(s282t)& ^F(t282t)F(t18)F(s18)F(s282t)&
VI ^F(t28)F(t182t)F(s18)F(s282t)& ^F(t282t)F(t182t)F(s18)F(s282t)&
VII ^F(t28)F(t18)F(s182t)F(s282t)& ^F(t282t)F(t18)F(s182t)F(s282t)&
VIII ^F(t28)F(t182t)F(s182t)F(s282t)& ^F(t282t)F(t182t)F(s182t)F(s282t)&
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I ~ t2s; t!5^A2~s, t!A1~ t, t!&. ~1!

Since the amplitudes are stationary functions, only the
ference betweent ands is of importance. The special case
t5s is particularly important because it represents a dir
time-average ‘‘intensity’’ measurement. For example, in o
tics, this would represent light intensity at a point in spa
and in spectroscopy this would represent homodyne de
tion of the signal.

It is not feasible to derive a completely closed form f
A1(t, t) and A2(s, t) given a fully general stationary re
sponse function. Instead here, we assumeA1 ~and A2! may
be expanded in a perturbation series based on the num
(ni) of times channel 1~channel 2! samples the input
A1(t,t)5Sn1

A1
(n1)(t, t) (A2(t, t)5Sn2

A2
(n2)(t, t)). That

is, we assume that the contribution toA1 ~andA2! decreases
sufficiently rapidly as a function of the number of samplin
of the input, such that it is well approximated by the low
order terms. Furthermore, each successive order introd
smaller corrections toA1 ~andA2! than the previous order.

III. THE SECOND-ORDER ÕSECOND-ORDER CASE

The second-order/second-order case of the general d
opment outlined above is taken as the working example.
second-order/second-order, it is meant thatA1(t, t)
5A1

(2)(t, t) and A2(s, t)5A2
(2)(s, t). Thus, the main

goal will be the evaluation of̂ A2
(2)(s, t)A1

(2)(t, t)&. As
stated above, the order gives the number of times the ran
input, V(t), acts on the system~in a perturbative sense!.
Consequently,

A1
~2!~ t, t!5E

2`

t

dt28E
2`

t28
dt18R1~ t2t28 ; t282t18!V~ t28!V~ t18!.

~2!

This expression states thatV(t) first acts at timet5t18 where-
upon the system propagates according to the response
tion R1 until V(t) acts for the second time att5t28 . The
system then propagates until the timet. In general, the re-
sponse during the intervalt282t18 is different than during the
interval t2t28 . The output amplitude for channel 2 is sim
larly
02614
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A2
~2!~s, t!5E

2`

s

ds28E
2`

s28
ds18R2~s2s28;s282s18!V~s28!V~s18!,

~3!

where again distinct time variables from that of channel 1
required.

Evaluation of ^A2
(2)(s, t)A1

(2)(t, t)& proceeds as fol-
lows:

^A2
~2!~s, t!A1

~2!~ t, t!&

5K E
2`

t

dt28E
2`

t28
dt18E

2`

s

ds28E
2`

s28
ds18R1~ t2t28 ;t282t18!

3R2~s2s28 ;s282s18!V~ t28!V~ t18!V~s28!V~s18!
L ,

~4!

The R’s are deterministic so the averaging operation can
brought inside the integration and applied only to theV’s.

^A2
~2!~s, t!A1

~2!~ t, t!&

5E
2`

t

dt28E
2`

t28
dt18E

2`

s

ds28E
2`

s28
ds18R1~ t2t28 ;t282t18!

3R2~s2s28 ;s282s18!^V~ t28!V~ t18!V~s28!V~s18!&. ~5!

Now, the random driving function can be written more e
plicitly as V5F1F8. So, the^V(t28)V(t18)V(s28)V(s18)& fac-
tor in Eq. ~5! becomes

^V~ t28!V~ t18!V~s28!V~s18!&

5K @F~ t28!1F~ t282t!#@F~ t18!1F~ t182t!#

3@F~s28!1F~s282t!#@F~s18!1F~s182t!#L . ~6!

The right-hand side is multiplied out to give 16 terms whi
are collected in Table I. Each of these terms is afour-point
time correlation function.

For concreteness, we consider one of these 16 terms a
example; term VIa :^F(t28)F(t182t)F(s18)F(s282t)&. For
this choice, the appropriate term from Eq.~5! is
2-2
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TABLE II. The 48 products of pair correlators arising from applying the Gaussian moment theorem to the four-point time cor
functions of Table I.

Term i ii iii

Ia ^F(t18)F(t28)&^F(s28)F(s18)& ^F(s18)F(t28)&^F(s28)F(t18)& ^F(s28)F(t28)&^F(s18)F(t18)&
Ib ^F(t18)F(t282t)&^F(s28)F(s18)& ^F(s18)F(t282t)&^F(s28)F(t18)& ^F(s28)F(t282t)&^F(s18)F(t18)&
IIa ^F(t182t)F(t28)&^F(s28)F(s18)& ^F(s18)F(t28)&^F(s28)F(t182t)& ^F(s28)F(t28)&^F(s18)F(t182t)&
IIb ^F(t182t)F(t282t)&^F(s28)F(s18)& ^F(s18)F(t282t)&^F(s28)F(t182t)& ^F(s28)F(t282t)&^F(s18)F(t182t)&
IIIa ^F(t18)F(t28)&^F(s28)F(s182t)& ^F(s182t)F(t28)&^F(s28)F(t18)& ^F(s28)F(t28)&^F(s182t)F(t18)&
IIIb ^F(t18)F(t282t)&^F(s28)F(s182t)& ^F(s182t)F(t282t)&^F(s28)F(t18)& ^F(s28)F(t282t)&^F(s182t)F(t18)&
IVa ^F(t182t)F(t28)&^F(s28)F(s182t)& ^F(s182t)F(t28)&^F(s28)F(t182t)& ^F(s28)F(t28)&^F(s182t)F(t182t)&
IVb ^F(t182t)F(t282t)&^F(s28)F(s182t)& ^F(s182t)F(t282t)&^F(s28)F(t182t)& ^F(s28)F(t282t)&^F(s182t)F(t182t)&
Va ^F(t18)F(t28)&^F(s282t)F(s18)& ^F(s18)F(t28)&^F(s282t)F(t18)& ^F(s282t)F(t28)&^F(s18)F(t18)&
Vb ^F(t18)F(t282t)&^F(s282t)F(s18)& ^F(s18)F(t282t)&^F(s282t)F(t18)& ^F(s282t)F(t282t)&^F(s18)F(t18)&
VIa ^F(t182t)F(t28)&^F(s282t)F(s18)& ^F(s18)F(t28)&^F(s282t)F(t182t)& ^F(s282t)F(t28)&^F(s18)F(t182t)&
VIb ^F(t182t)F(t282t)&^F(s282t)F(s18)& ^F(s18)F(t282t)&^F(s282t)F(t182t)& ^F(s282t)F(t282t)&^F(s18)F(t182t)&
VIIa ^F(t18)F(t28)&^F(s282t)F(s182t)& ^F(s182t)F(t28)&^F(s282t)F(t18)& ^F(s282t)F(t28)&^F(s182t)F(t18)&
VIIb ^F(t18)F(t282t)&^F(s282t)F(s182t)& ^F(s182t)F(t282t)&^F(s282t)F(t18)& ^F(s282t)F(t282t)&^F(s182t)F(t18)&
VIIIa ^F(t182t)F(t28)&^F(s282t)F(s182t)& ^F(s182t)F(t28)&^F(s282t)F(t182t)& ^F(s282t)F(t28)&^F(s182t)F(t182t)&
VIIIb ^F(t182t)F(t282t)&^F(s282t)F(s182t)& ^F(s182t)F(t282t)&^F(s282t)F(t182t)& ^F(s282t)F(t282t)&^F(s182t)F(t182t)&
n
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^A2
~2!~s, t!A1

~2!~ t, t!&

5E
2`

t

dt28E
2`

t28
dt18E

2`

s

ds28E
2`

s28
ds18R1~ t2t28 ;t282t18!

3R2~s2s28 ;s282s18!^F~ t28!F~ t182t!F~s18!F~s282t!&.

~7!

The four-point time correlation function in this equation ca
not be evaluated conveniently unless we assume the ran
functionsF obey circular Gaussian statistics. With this as-
sumption, all the four-point time correlators can be fact
ized into a~three-term! sum of a product of~two! two-point
correlators according to the Gaussian moment theorem@11–
13#. Ultimately, this results in 1633548 terms~Table II!.
Applying the Gaussian moment theorem to term VIa o
obtains

^F~ t28!F~ t182t!F~s18!F~s282t!&

5^F~ t182t!F~ t28!&^F~s282t!F~s18!& ~ i! ~8!

1^F~s18!F~ t28!&^F~s282t!F~ t182t!& ~ ii !

1^F~s282t!F~ t28!&^F~s18!F~ t182t!&. ~ iii !

In the next section, these terms will be evaluated us
FTC diagram analysis, but now, for completeness, we s
evaluate one of these terms analytically. Focusing on t
TVIaiii , one needs to evaluate
02614
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TVIaiii 5E
2`

t

dt28E
2`

t28
dt18E

2`

s

ds28E
2`

s28
ds18R1~ t2t28 ;t282t18!

3R2~s2s28 ;s282s18!^F~s282t!F~ t28!&

3^F~s18!F~ t182t!&. ~9!

It is convenient to make the change of variablest5t, t25t
2t28 , t15t282t18 , s5s, s25s2s28 , s15s282s18 . ~Note that
upon this change of variablest2 , t1 , s2 , and s1 represent
time intervals rather than times of action by the random dr
ing function.! This gives

TVIaiii 5E
0

`

dt2E
0

`

dt1E
0

`

ds2E
0

`

ds1R1~ t2 ;t1!R2~s2 ;s1!

3^F~ t2t2!F~s2s22t!&^F~ t2t22t12t!

3F~s2s22s1!&. ~10!

If F is white, i.e., if it is completely random, the
^F(a)F(b)&5d(a2b), whered is the Diracd function. So,

TVIaiii 5E
0

`

dt2E
0

`

dt1E
0

`

ds2E
0

`

ds1R1~ t2 ;t1!R2~s2 ;s1!

3d~ t2t22s1s21t!d~ t2t22t12t2s1s21s1!.

~11!

Performing thes1 integration gives

TVIaiii 5E
0

`

dt2E
0

`

dt1E
0

`

ds2R1~ t2 ;t1!R2~s2 ;2t1t21t11t

1s2s2!d~ t2t22s1s21t!, ~12!

and performing thes2 integration gives
2-3
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TVIaiii 5E
0

`

dt2E
0

`

dt1R1~ t2 ;t1!R2~s2t1t22t;t112t!.

~13!

This is the general form~restricted by our above assum
tions!. A causalR is implied from the initial definition.~Im-
plications of causality inR are discussed in more detail i
Appendix A.! For the very common case whens5t, Eq.~13!
simplifies to

TVIaiii 5E
0

`

dt2E
0

`

dt1R1~ t2 ;t1!R2~ t22t;t112t!.

~14!

IV. FTC DIAGRAMS

It is convenient to represent the factorized terms in E
~10! pictorially as FTC diagrams. The FTC diagrams a
FTC diagram analysis provide a general mechanism
translating the initial expressions to their evaluated form.
general, a FTC diagram, representing an1

th-order/n2
th-order
02614
.

r
n

factorized time correlator, consists of a template having t
horizontal timelinest ands which represent channels 1 an
2, respectively. Superimposed on each of these timelines
n1 andn2 tick marks—one for each time integration variab
$t i8% and $si8%. For the second-order/second-order case st
ied here, each line then has two tick marks. A single F
diagram can be constructed for each term in Table II a
these diagrams are collected in Table III. Factors~pair corr-
elators! of the form ^F(a)F(b)&, where a and b are any
given time variable, and^F8(a)F8(b)&5^F(a2t)F(b
2t)&, which can be written aŝF(a)F(b)& under stationar-
ity, aret independent. Such terms are represented in the F
diagrams by aline segment connecting the two time poin
involved in the pair correlator. Factors of the for
^F8(a)F(b)& and^F(a)F8(b)& aret dependent and are rep
resented byarrow segments drawn from the tick mark co
responding to the time argument ofF to the tick mark cor-
responding to the time argument ofF8. So, in Table III, 12
of the 48 FTC diagrams represent completelyt-independent
terms. These diagrams areTIai-iii , TIIbi , TIIIbii , TIVaiii , TVbiii ,
TVIaii , TVIIai , andTVIIIbi-iii . The remaining 36 diagrams ar
2-4
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FACTORIZED TIME CORRELATION DIAGRAM . . . PHYSICAL REVIEW E65 026142
t dependent and contribute to the ‘‘interesting’’ features
the signal. They probe the dynamics of the system.

Any pair correlator~line or arrow segment in the FTC
diagram! represents thedirect correlationbetween actions o
the driving function. With the appropriate normalization, t
pair correlator is unity when the difference in the time arg
ments is zero and it vanishes as the difference in the t
arguments tends to infinity. The rate at which the pair c
relator vanishes from unity is characterized by the correla
time tc of the stochastic process. A precise definition oftc is
not needed for this paper—only that the pair correlator
appreciable for time differences smaller thentc and is neg-
ligible for time differences greater thentc . Since one of the
primary interests of this paper is demonstratingindirect cor-
relation, which can be much greater thantc , we shall make
the simplifying ~but not required! approximation thattc
→0, i.e., the pair correlators can be replaced withd func-
tions. This is the same assumption that was used in the
vious section to provide thed functions that assisted th
integration during the analytic calculation.

Associated with FTC diagram analysis are several
mary principles or ‘‘tools.’’ We shall show that indirect co
relation follows as a ‘‘secondary’’ principle from two pri
mary principles of FTC diagram analysis—name
synchronizationand accumulation~now to be discussed in
turn!. Synchronization and accumulation act together to
termine the relative strength of the terms represented
grammatically by the FTC diagrams.

A. Synchronization

Any given pair correlator ‘‘synchronizes’’ its two time
arguments to within roughlytc ~otherwise the correlator van
ishes!. Under our current approximation of ad-function cor-
relator (tc50), the two time arguments are exactly synch
nized. For example, the pair correlator^F(si)F(t j )& forcest j
~on the t timeline! to be coincident withsi ~on thes time-
line!. Likewise the pair correlator̂ F8(sk)F(t l)&5^F(sk
2t)F(t l)& forcest l to be coincident withsk2t.

The system response function can serve to soften the
chronization condition on a single timeline~intrachannel!.
That is, for any noninstantaneous response function, a g
channel of the system carries a ‘‘memory’’ of the stochas
input. This memory can allow for the direct correlation b
tween the time arguments to be longer thantc and charac-
terized by the decay of the system memory. And this type
synchronization allows for a direct measurement of the s
tem response function. The FTC diagrams in columns ai
bi that contain at least one arrow segment allow for the dir
probing of the system since the independent pair correla
are intrachannel.

The majority of the FTC diagrams in Table III do no
contain intrachannel correlations, however. The FTC d
grams in columns aii , aiii , bii , and biii contain onlyinter-
channelcorrelations, since all the line and arrow segme
connect a tick mark on thet timeline to a tick mark on thes
timeline. At first glance, it appears that these diagrams wo
be of little interest because it would seem that these corr
tions do not probe the system response function. As we s
02614
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shortly see, however, these diagrams are important~and, in
fact, dominant in many situations! because ofindirect corre-
lation. Before addressing indirect correlation more tho
oughly, we must first discuss the idea of accumulation.

B. Accumulation

Since the inputsF and F8 are infinitely extended func-
tions of time, they may be sampled by the system at a
time. This point is represented analytically by the tim
ordered integrals appearing in the expressions forA1

(2)(t) and
A2

(2)(s) @Eqs.~2! and~3!#. In terms of the FTC diagrams, thi
means that any correlated pair of tick marks on their resp
tive timelines may be drawn at any point on their timelin
provided the two tick marks remain synchronized and pro
time ordering is maintained on both timelines. The stren
of the term represented by a given FTC diagram is de
mined by the ability of its constituent pair correlators~seg-
ments! to accumulateover the response function envelop
for the two timelines. This concept is illustrated by Fig.
which shows several examples from the set of FTC diagra
in Table III.

The topology of a given diagram becomes very import
when considering accumulation. Notice in Table III that the
are three basic topologies manifest in this set of FTC d
grams. Columns ai and bi all have two intrachannel corre
tions. Columns aii and bii have ‘‘crossed’’ interchannel t
pology, where the first action~tick mark! on thet timeline is
correlated with the second action on thes timeline and vice
versa. Finally, columns aiii and biii have ‘‘uncrossed’’ inte
channel topology, where the first and second actions on tt
timeline are correlated with the first and second actions
the s timeline respectively. Topologically, accumulation
represented by the ability of a tick mark~or in this case, a
correlated pair of tick marks! to ‘‘slide along the timeline.’’

For the intrachannel FTC diagrams~columns ai and bi ,
there is full and independent accumulation over the ‘‘t2 in-
terval’’ i.e., the interval from the second tick mark to the e
of the timeline!. We will generally refer to the interval from
the second tick mark forward in time as the ‘‘t2 interval’’
regardless of which channel we are referring to. Likewi
we will refer to the interval between the tick marks as t
‘‘ t1 interval’’ regardless of channel. Thet timeline pair accu-
mulates independently from thes timeline pair @Fig. 1~a!#.
However, no accumulation occurs over thet1 interval. In
contrast, the uncrossed FTC diagrams have correlated a
mulation over both thet1 andt2 intervals. Thet timeline and
the s timeline accumulation are not independent of one
other @Fig. 1~c!#. Finally, the crossed FTC diagrams are t
most topologically constrained. Here, full-correlated acc
mulation can take place over thet2 interval, but only con-
fined correlated accumulation takes place over thet1 inter-
val. This confined accumulation will be treated mo
explicitly in the discussion of indirect correlation.

C. Indirect correlation

With the concepts of synchronization and accumulation
hand, one is in position to understand the interesting p
2-5
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FIG. 1. Illustration of accumulation for each of the three ba
topologies of the FTC diagrams:~a! intrachannel,~b! interchannel
crossed, and~c! interchannel uncrossed. The dashed vertical line
the right-most side of the FTC diagram is present to emphasize
case whent5s, which is used for simplicity in the text. FTC dia
grams for the more general case whentÞs are presented in Appen
dix B. ~a! For the intrachannel FTC diagrams, the two tick mar
are synchronized by thed-function correlation of the random inputs
The two tick marks on each of the timelines are drawn with a sli
separation to aid the eye. Actually, they would be superimposed
one another for this diagram. The two tick marks on each time
cannot change their relative position—they are ‘‘locked’’ togeth
as a correlated pair. So thet1 interval ~between the tick marks! is
not accumulated over. However, the correlated pair can ‘‘slide al
the timeline’’ as a unit. Thus, the relative position of the pair w
respect to the end of the timeline can change. The fullt2 interval on
the t timeline, and independently, on thes timeline is accumulated
over.~b! The crossed FTC diagrams have a more confined topol
Since the first tick mark on thet timeline is correlated with the
second on thes timeline and vice versa, all four tick marks must b
coincident. So, no accumulation over thet1 interval is allowed.
Furthermore, accumulation over thet2 interval does not occur in-
dependently on the two channels.~c! For the uncrossed FTC dia
grams, the first tick mark on thet timeline is correlated with the firs
on the s timeline; similarly for the second tick marks. Thus, th
relative position of the first and second tick marks can vary. T
allows for accumulation over thet1 interval, where the accumula
tion is synchronized with thet1 interval accumulation on the
s timeline. Synchronized accumulation also occurs over thet2

interval.
02614
nomenon of indirect correlation that arises in this seco
order/second-order example. The basic principle behind
ability of twin stochastic perturbative driving functions t
probe system dynamics is that the stochastic function is
pressed upon the system. That is, the system ‘‘rememb
this stochastic function such that it can facilitate delayed c
relation with the twin stochastic function. The ‘‘memory’’ o
the first function fades on the order of the decay of the s
tem response function. This provides a mechanism for
tracting the system response function information. Dir
correlation of the first and second interaction times~t18 andt28
or s18 ands28! is only available to the diagrams of columns
and bi in Table III. It is clear that these intrachannel corre
tions will provide response function information by th
mechanism just mentioned. The remaining diagrams~col-
umns aii , aiii , bii , and biii! appear, at first glance, to b
useless for obtaining response function information beca
there is no direct correlation betweent18 andt28 or s18 ands28 .
This is not the case, however, because the first and se
interaction times on a given timeline are indirectly corr
lated. Generally, indirect correlation is a consequence of
direct correlation of interchannel pairs of tick marks and t
topological constraints of the given FTC diagram. That
one interaction time~a tick mark on the FTC diagram! on
channel 1 is directly correlated to an interaction time
channel 2. The other interaction time on channel 2 is to
logically constrained to occur either only before or only af
~depending on the FTC diagram! this interaction. The other
interaction is in turn directly correlated with the remainin
interaction on channel 1. In this roundabout~or indirect! way
the two intrachannel interactions on channel 1~and the two
on channel 2! are indeed correlated and these types of F
diagrams can provide response function information. F
concreteness we consider two examples.

As a first example, consider FTC diagramTVIaiii as shown
in Fig. 2. The two arrowed segments representing th
t-dependent pair correlators do not intersect~interchannel
uncrossed segment topology!. In this particular example, the
first interaction~tick mark! on channel 1 is directly corre
lated with the first interaction on channel 2 and the seco
interaction on channel 1 is directly correlated with the s
ond interaction on channel 2. The topological constraints
this FTC diagram forbid the arrowed segments represen
the direct correlations from crossing. This imposes a cer
behavior on the term represented by this FTC diagram
allows one to obtain response function information throu
indirect correlation as we shall now see. When the time d
placementt is zero, as in Fig. 2~a!, there is full ~synchro-
nized! accumulation over the response functions of bo
channels resulting in the maximal value for the term rep
sented by this diagram. Whent.0 @Fig. 2~b!#, synchroniza-
tion forces the two tick marks on thes timeline apart by at
least 2t, thus limiting the accumulation over the respon
function of channel 2 during thet1 interval. Full accumula-
tion remains available over thet2 interval on thes timeline.
Additionally, accumulation is limited over thet2 interval on
channel 1, but full accumulation is available over thet1 in-
terval. The value of the term represented by the FTC diag
is necessarily less than that whent50. Similarly for t,0,
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FACTORIZED TIME CORRELATION DIAGRAM . . . PHYSICAL REVIEW E65 026142
the two tick marks on thet timeline are forced apart by a
least 2t @Fig. 2~c!#. Now the roles of channel 1 and chann
2 are opposite that of thet.0 case. Whenutu is large enough
that the response function of channel 1 or 2 has fully
cayed, the value of the term represented by the FTC diag
vanishes.

Now consider FTC diagramTVbii as shown in Fig. 3.
Here, the two arrowed segments representing th
t-dependent pair correlators cross each other~crossed seg-
ment topology!. In this particular example, the first intera
tion on channel 1 is correlated to the second interaction
channel 2 and the second interaction on channel 1 is co
lated to the first interaction on channel 2. The topologi
constraints of this FTC diagram require that the arrowed s
ments representing direct correlations remain crossed. W
the time displacementt is zero@Fig. 3~a!# there is necessarily
no accumulation~under our approximation of ad-function
time correlator! over thet1 interval for both channels. This
results in a value of zero for the term represented by
FTC diagram. Whent,0, preservation of the proper tim
ordering of the samplings forbids any synchronization sin

FIG. 2. Indirect correlation in uncrossed FTC diagrams.~a!
When t50, the first tick mark on thet timeline is exactly coinci-
dent with the first tick mark on thes timeline; similarly for the
second tick marks. So the arrow segments are drawn vertically~and
could, in fact, be replaced with line segments!. Full synchronized
accumulation occurs over both thet1 and t2 intervals. ~b! For t
.0, the first tick mark on thet timeline is now displaced by a
magnitudet from the first tick mark on thes timeline; similarly, but
oppositely, for the second tick marks. This means that the two
marks on thes timeline can come no closer then 2t apart. Likewise,
the second tick marks on thet timeline can come no closer thant
away from the end of the timeline. Therefore, accumulation o
both thet1 and t2 intervals is diminished compared to whent50.
~c! For t,0, the situation is very similar to whent.0, however,
now the two tick marks on thet timeline are forced to be at least 2t
apart and the second tick mark on thes timeline is at leastt away
from the end of the timeline. So, one generally expects a decrea
the strength of the term represented by uncrossed FTC diagram
utu is increased.
02614
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the two correlated pairs of tick marks can never be simu
neously synchronized. This also produces a zero value
the term represented by this FTC diagram fort,0. On the
other hand, fort.0 @Fig. 3~b!#, synchronization of both of
the pair correlators can be simultaneously satisfied. Now
cumulation over thet1 interval is limited to no more than 2t
on both thet ands timelines. However, unlike accumulatio
in the uncrossed case, separation of tick marks on thet time-
line forces the tick marks on thes timeline closer together
and vice versa. So, there are two basic ways indirect co
lation is manifest in this two-channel system:~i! tick marks
are forced apart by at least somet-dependent interval~not
necessarily 2t! for the uncrossed segment topology or~ii ! the
tick marks are confined to be no more than so
t-dependent interval apart as for the crossed segment
grams.

V. FTC DIAGRAM ANALYSIS

The general ideas of FTC diagram analysis discus
above can now be applied to the current system such th
mapping is made from the FTC diagrams to the general
lution for this second-order/second-order case. A very co
mon situation is the case wheret5s ~e.g., homodyne detec
tion in spectroscopy and light intensity in optics!. We shall
work with this case simply as a matter of convenience. T
situation wheretÞs poses no fundamental problem but th
FTC diagram analysis becomes unnecessarily clouded by
additional complication. FTC diagram analysis for the ca
where tÞs is briefly addressed in Appendix B by way o
example.

There are two important properties of the signal that c
be obtained immediately from the set of FTC diagrams. T
first property ist symmetry. For the set of FTC diagrams

k

r

in
as

FIG. 3. Indirect correlation in crossed FTC diagrams.~a! When
t50, this case is exactly equivalent to thet independent crossed
FTC diagrams~line segments only! and so the value of the term
represented by the diagram is zero.~b! For t.0, the topological
constraint is relaxed as the tick marks on both thet timeline ands
timeline can now move relative to one another by up to 2t. This
allows for some accumulation over thet1 interval. Full accumula-
tion is available over thet2 interval. So, one generally expects th
contribution from crossed FTC diagrams to initially increase w
increasingutu.
2-7



BIEBIGHAUSER, TURNER, AND ULNESS PHYSICAL REVIEW E65 026142
TABLE IV. The general expressions for the FTC diagrams having intrachannel topology~columns ai and
bi of Table III!.

Term t.0 t,0

TIai *0
`dt2*0

`ds2R1(t2 ; 0)R2(s2 ; 0) *0
`dt2*0

`ds2R1(t2 ; 0)R2(s2 ; 0)
TIbi *0

`dt2*0
`ds2R1(t2 ; t)R2(s2 ; 0) 0

TIIai 0 *0
`dt2*0

`ds2R1(t2 ; 2t)R2(s2 ; 0)
TIIbi *0

`dt2*0
`ds2R1(t2 ; 0)R2(s2 ; 0) *0

`dt2*0
`ds2R1(t2 ; 0)R2(s2 ; 0)

TIIIai 0 *0
`dt2*0

`ds2R1(t2 ; 0)R2(s2 ; 2t)
TIIIbi a 0 0
TIVai 0 *0

`dt2*0
`ds2R1(t2 ; 2t)R2(s2 ; 2t)

TIVbi 0 *0
`dt2*0

`ds2R1(t2 ; 0)R2(s2 ; 2t)
TVai *0

`dt2*0
`ds2R1(t2 ; 0)R2(s2 ; t) 0

TVbi *0
`dt2*0

`ds2R1(t2 ; t)R2(s2 ; t) 0
TVIaia 0 0
TVIbi *0

`dt2*0
`ds2R1(t2 ; 0)R2(s2 ; t) 0

TVIIai *0
`dt2*0

`ds2R1(t2 ; 0)R2(s2 ; 0) *0
`dt2*0

`ds2R1(t2 ; 0)R2(s2 ; 0)
TVIIbi *0

`dt2*0
`ds2R1(t2 ; t)R2(s2 ; 0) 0

TVIIIai 0 *0
`dt2*0

`ds2R1(t2 ; 2t)R2(s2 ; 0)
TVIIIbi *0

`dt2*0
`ds2R1(t2 ; 0)R2(s2 ; 0) *0

`dt2*0
`ds2R1(t2 ; 0)R2(s2 ; 0)

aPrecisely att50 these terms are equivalent toTIai . The discontinuity is a consequence of thed-function
correlation function for the random input functions.
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Table III, one sees that each diagram is paired with ano
with respect to inversion of the direction of the arrow; f
exampleTIbi and TIIai or TIIIbiii and TVIaiii , etc. From the
topology of the FTC diagrams, for this second order/seco
order case, the signal must be a symmetric function ot
regardless of the choice of response function. One m
have expected generalt symmetry from the structure of th
driving force, i.e., the roles ofF andF8 should be symmet-
ric. While the present second-order/second-order case di
deed turn out to yield a signal that was symmetric int, this
cannot always be assumed for generaln1

th-order/n2
th-order

cases. The original work using FTC diagram analysis and
very same driving function to model a degenerate four-w
mixing process in nonlinear optical spectroscopy, which is
the third-order/third-order type, shows an asymmetric sig
@4#.

A second property is the dynamic range or peak to ba
ground contrast ratio. This is simply the ratio of^A2

(2)(s,t
50)A1

(2)(t,t50)& to ^A2
(2)(s,t→`)A1

(2)(t,t→`)&. Consid-
ering the set of FTC diagrams in Table III, one sees that
of the 48 diagrams aret-independent~lines only!. Of these
12 diagrams, there are three types~intrachannel, interchanne
crossed, and interchannel uncrossed! each having a fourfold
degeneracy. Now, considering the full set of FTC diagram
at t50 all the arrows in thet-dependent diagrams can b
drawn as lines. Again, there are three types, but now
degeneracy is 16~including thet-independent diagrams!. As
t→`, all the arrowed diagrams vanish. Thus, the peak
background contrast ratio is 16:4 or 4:1. Like thet symme-
try, this is independent of the choice of the response funct
Also like the t symmetry, other cases such as third-ord
third-order examples can exhibit different peak-t
background contrast ratios than for this second-order/sec
order case.
02614
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Now one can apply the principles of FTC diagram ana
sis to obtain the general analytic structure of the terms r
resented by the diagrams. Turning first to the intrachan
FTC diagrams of columns ai and bi in Table III, we ha
stated that full and independent accumulation is availa
over the t2 intervals on both channels. Analytically, th
statement implies that two separate integrations must be
formed. Furthermore, no integration is done over thet1 in-
tervals. So the general analytic structure of the intrachan
FTC diagrams is

E
0

`

dt2E
0

`

ds2R1~ t2 ; x!R2~s2 ; y!, ~15!

where x and y are 0 for line segments,t ~2t! for arrows
pointing to the right~left! andt.0(t,0). The value of the
term represented by the FTC diagram is zero when at l
one arrow points to the right~left! and t,0(t.0). The
results for all the intrachannel diagrams are listed in Ta
IV.

For the crossed FTC diagrams we know, from the gene
discussion in the previous section, that at most a given
gram will represent a term having a nonzero value for eit
t.0 or t,0. Correlated accumulation is available over t
t2 intervals. The accumulation is limited, however, over t
t1 interval. Thus, the analytic structure of these diagra
~when the terms they represent are not equal to zero! is

E
0

`

dt2E
0

u

dt1R1~y1 ; t1!R2~y2 ; x!, ~16!

whereu56t or 62t, x5u2t1 andy1 andy2 are appropri-
ate time arguments~too varied to conveniently summariz
here!. The results for each of the crossed FTC diagrams
listed in Table V.
2-8
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TABLE V. General expressions for the crossed FTC diagrams~columns aii and bii of Table III!. To condense the table, letT21[t2

1t1 and t21[t22t1 .

Term t.0 t,0

TIaii 0 0
TIbii *0

`dt2*0
tdt1R1(t2 ; t1)R2(T21; t2t1) 0

TIIaii 0 *0
`dt2*0

2tdt1R1(t212t; t1)R2(t2 ; 2t2t1)
TIIbii 0 0
TIIIaii 0 *0

`dt2*0
2tdt1R1(t2 ; t1)R2(T21; 2t2t1)

TIIIbii 0 0
TIVaiia 0 *0

`dt2*0
22tdt1R1(t2 ; t1)R2(T211t; 22t2t1)

TIVbii 0 *0
`dt2*0

2tdt1R1(t212t; t1)R2(t2 ; 2t2t1)
TVaii *0

`dt2*0
tdt1R1(t211t; t1)R2(t2 ; t2t1) 0

TVbiia *0
`dt2*0

2tdt1R1(t2 ; t1)R2(T212t; 2t2t1) 0
TVIaii 0 0
TVIbii *0

`dt2*0
tdt1R1(t2 ; t1)R2(T21; t2t1) 0

TVIIaii 0 0
TVIIbii *0

`dt2*0
tdt1R1(t211t ; t1)R2(T2 ; t2t1) 0

TVIIIaii 0 *0
`dt2*0

2tdt1R1(t2 ; t1)R2(T21; 2t2t1)
TVIIIbii 0 0

aCausality of the response functions was used to simplify the expression to a single term. FTC diagram analysis would more natu

E
0

`

dt2E
0

6t

dt1R1~t216t; t1!R2~ t2 ; 62t2t1!1E
0

`

dt2E
6t

62t

dt1R1~ t2 ; t1!R2~T217t;62t2t1!.
tio
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o
s
f t
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Uncrossed FTC diagrams have correlated accumula
over thet1 and t2 intervals. For these diagrams, it is mo
convenient to associate the accumulation with full integ
tion from zero to infinity over both thet1 andt2 intervals. In
doing this, however, one must account for the limitations
the accumulation by appropriately choosing the argument
the response function. So the general analytic structure o
uncrossed FTC diagrams is
02614
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E
0

`

dt2E
0

`

dt1R1~x1 ; y1!R2~x2 ; y2!, ~17!

where x1 , y1 , x2 , and y2 are the appropriate time argu
ments; too varied to conveniently summarize here, but
explicit expressions for each of the uncrossed FTC diagra
are collected in Table VI.

The most natural way to analyze FTC diagrams is to tr
TABLE VI. General expressions for the uncrossed FTC diagrams of Table III~columns aiii and biii!.

Term t.0 t,0

TIaiii *0
`dt2*0

`dt1R1(t2 ; t1)R2(t2 ; t1) *0
`dt2*0

`dt1R1(t2 ; t1)R2(t2 ; t1)
TIbiii *0

`dt2*0
`dt1R1(t2 ; t11t)R2(t21t; t1) *0

`dt2*0
`dt1R1(t22t; t1)R2(t2 ; t12t)

TIIaiii *0
`dt2*0

`dt1R1(t2 ; t1)R2(t2 ; t11t) *0
`dt2*0

`dt1R1(t2 ; t12t)R2(t2 ; t1)
TIIbiii *0

`dt2*0
`dt1R1(t2 ; t1)R2(t21t; t1) *0

`dt2*0
`dt1R1(t22t; t1)R2(t2 ; t1)

TIIIaiii *0
`dt2*0

`dt1R1(t2 ; t11t)R2(t2 ; t1) *0
`dt2*0

`dt1R1(t2 ; t1)R2(t2 ; t12t)
TIIIbiii *0

`dt2*0
`dt1R1(t2 ; t112t)R2(t21t; t1) *0

`dt2*0
`dt1R1(t22t; t1)R2(t2 ; t122t)

TIVaiii *0
`dt2*0

`dt1R1(t2 ; t1)R2(t2 ; t1) *0
`dt2*0

`dt1R1(t2 ; t1)R2(t2 ; t1)
TIVbiii *0

`dt2*0
`dt1R1(t2 ; t11t)R2(t21t; t1) *0

`dt2*0
`dt1R1(t22t; t1)R2(t2 ; t12t)

TVaiii *0
`dt2*0

`dt1R1(t21t; t1)R2(t2 ; t11t) *0
`dt2*0

`dt1R1(t2 ; t12t)R2(t22t; t1)
TVbiii *0

`dt2*0
`dt1R1(t2 ; t1)R2(t2 ; t1) *0

`dt2*0
`dt1R1(t2 ; t1)R2(t2 ; t1)

TVIaiii *0
`dt2*0

`dt1R1(t21t; t1)R2(t2 ; t112t) *0
`dt2*0

`dt1R1(t2 ; t12t)R2(t22t; t1)
TVIbiii *0

`dt2*0
`dt1R1(t2 ; t1)R2(t2 ; t11t) *0

`dt2*0
`dt1R1(t2 ; t122t)R2(t2 ; t1)

TVIIaiii *0
`dt2*0

`dt1R1(t21t; t1)R2(t2 ; t1) *0
`dt2*0

`dt1R1(t2 ; t1)R2(t22t; t1)
TVIIbiii *0

`dt2*0
`dt1R1(t2 ; t11t)R2(t2 ; t1) *0

`dt2*0
`dt1R1(t2 ; t1)R2(t2 ; t12t)

TVIIIaiii *0
`dt2*0

`dt1R1(t21t; t1)R2(t2 ; t11t) *0
`dt2*0

`dt1R1(t2 ; t12t)R2(t22t; t1)
TVIIIbiii *0

`dt2*0
`dt1R1(t2 ; t1)R2(t2 ; t1) *0

`dt2*0
`dt1R1(t2 ; t1)R2(t2 ; t1)
2-9
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the t.0 and t,0 cases separately. The direct analytic
calculation of the terms associated with the diagrams d
not naturally treat the cases separately. At first glance,
not obvious that the two results are equivalent. In fact,
noncausal response functions, they are not equivalent,
FTC diagrams are not valid in noncausal situations. T
equivalence of these two methods of obtaining the final fo
of the expressions is shown in Appendix A. One nice feat
of the form of the expression arising from FTC analysis
that causality is automatically built in. So, when an expli
form of the response function is chosen, one need not exp
itly include the step function as a factor in the response fu
tion. This is beneficial when evaluating particular cases us
computer algebra software such asMATHEMATICA to auto-

TABLE VII. Expressions for the specific example of the r
sponse function described in Eq.~19!.

Term i ii iii

Ia 1

g2

0 1

4g
Ib e2T

g2

e2TT

2g

e2~11g!T

4g
IIa 0 0 e22T

4g
IIb 1

g2

0 e2gT

4g
IIIa 0 0 e2T

4g
IIIb 0 0 e2~21g!T

4g
IVa 0 0 1

4g
IVb 0 0 e2~11g!T

4g
Va 0 e2TT

2g

e2~11g!T

4g
Vb e22TT

g2

e22TT

g

1

4g
VIa e2T

g2

0 e2~21g!T

4g
VIb e2T

g2

e2TT

2g

e22T

4g
VIIa 1

g2

0 e2gT

4g
VIIb e2T

g2

e2TT

2g

e2T

4g
VIIIa 0 0 e2~11g!T

4g
VIIIb 1

g2

0 1

4g
02614
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mate the process. The disadvantage of the FTC diagram
proach is that each diagram has two cases:t.0 andt,0.
This is compounded when considering the more general s
ation whentÞs ~see Appendix B!.

It is interesting to investigate how each of the differe
terms represented by FTC diagrams probe the response
tions. As stated above, the intrachannel FTC diagrams~col-
umns ai and bi of Table III! directly probe the response func
tions; more precisely, the response during thet1 interval.
Since full accumulation is always available over thet2 inter-
val, it cannot be probed as a function oft. DiagramsTIbi ,
TIIai , TVIIbi , andTVIIIai isolate thet1 interval for channel 1.
DiagramsTIIIai , TIVbi , TVai , andTVIbi isolate thet1 interval
for channel 2. Finally, diagramsTIVai and TVbi simulta-
neously probe channel 1 and 2. All the crossed FTC d
grams isolate thet1 interval but not independently on eac
channel. Only the uncrossed FTC diagrams are capabl
probing thet2 interval. DiagramsTIIbiii andTVIIaiii isolate the
t2 interval. Furthermore, fort.0 diagramTIIbiii isolatest2
on channel 1 and diagramTVIIaiii isolatest2 on channel 2.
~For t,0, the roles of these diagrams are reversed.! Dia-
gramsTIbiii , TIIIbiii , TIVbiii , TVaiii , TVIaiii , andTVIIIaiii simul-
taneously probe thet1 and t2 intervals.

A. Example

As an example, consider the system in which the respo
functions are

R1~ t2 ;t1!5Q~ t1!Q~ t2!e2g1t1e2g2t2, ~18!

R2~s2 ;s1!5Q~s1!Q~s2!e2g1s1e2g2s2.

~Note: both channel 1 and channel 2 have identical respo
functions which we simply callR.! Since causality is auto
matically included in the FTC diagram derived expressio
one can drop the step-function factors. Furthermore, the
sponse function can be nondimensionalized by working
units of, say,g1 and definingTi5g1t i , g5g2 /g1 . Then,

R5e2T1e2gT2. ~19!

The expressions for each of the FTC diagrams forg1t5T
.0 are listed in Table VII. It is interesting to consider th
relative strengths of the different topologies of the diagram
The intrachannel diagrams~column i of Table VII! are pro-
portional to 1/g2, the crossed diagrams~column ii! are pro-
portional toT/g and the uncrossed diagrams~column iii! are
proportional to 1/g. Considering the crossed diagrams fir
one sees that the expressions go to zero asT→0 as generally
expected from the principles of FTC diagram analysis. No
considering the intrachannel and uncrossed diagrams, th
tio of the uncrossed to intrachannel terms is (1/g)/(1/g2)
5g5g2 /g1 . So we see that ifg2.g1 , the uncrossed term
dominate, whereas ifg2,g1 the intrachannel terms domi
nate. This is what is expected from the standpoint of ac
mulation. The intrachannel diagrams have two full accum
lations over thet2 interval, whereas the uncrossed diagra
have one accumulation each over thet1 and t2 intervals. So
if the decay of the response is faster during thet2 interval
2-10
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(g2.g1) then one expects the intrachannel diagrams to
disadvantaged. Conversely, if the decay is slower (g2,g1)
the intrachannel diagrams have the advantage of greater
accumulation.

VI. CONCLUSION

In this paper, the properties and mathematical structur
factorized time correlation~FTC! diagram analysis were ex
amined in a generalized context. That is, the general p
ciples and analytic behavior were not explicitly or implicit
tied to any particular phenomenon in physics~other than
driven causal systems!. The specific case of second orde
second order was used as the working example in orde
give a concreteness to the general principles and proced
of FTC diagram analysis. It was shown that the topologi
structure of the FTC diagrams yields much informati
about the signal as a function oft such as symmetry, dy
namic range, and general analytic structure of the terms
diagrams represent. The very interesting phenomenon o
direct correlation was presented. The FTC diagrams provi
a topological interpretation of this phenomenon that
readily seen. It is hoped that this paper will provide a ba
for expanded use of FTC diagram analysis. Currently, F
diagram analysis has only been exploited in the study
noisy light-based nonlinear optical spectroscopy. Expans
of its use into other areas of physics could provide v
beneficial cross fertilization of ideas and deepened ins
into these areas.
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APPENDIX A

In the text, it was noted that FTC diagram analysis yie
expressions in a different from than what naturally aris
from the direct analytical calculation. In this Appendix, w
show the equivalence of these two methods of obtaining
final expression. As in the text, we take as the example t
TVIaiii

Beginning with Eq.~13!, we consider the two casest
.0 and t,0 and the situation wheres5t ~Appendix B
addresses the more general case ofsÞt!. One now must
specifically invoke the causal nature ofR. This implies

TVIaiii 5E
t

`

dt2E
0

`

dt1R1~ t2 ; t1!R2~ t22t; t112t!, t.0

~A1!

~n.b., the lower limit of thet2 integration can be set tot! and

TVIaiii 5E
0

`

dt2E
22t

`

dt1R1~ t2 ; t1!R2~ t22t; t112t!,

t,0 ~A2!
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~n.b., the lower limit of thet1 integration can be set to22t!.
With a simple change of variables one can write

TVIaiii

55 E
0

`

dt2E
0

`

dt1R1~ t21t;t1!R2~ t2 ; t112t!, t.0

E
0

`

dt2E
0

`

dt1R1~ t2 ; t122t!R2~ t22t; t1!, t,0

,

~A3!

which agrees precisely with the expression obtained fr
FTC diagram analysis~Table VI!.

APPENDIX B

Throughout the discussion of FTC diagram analysis,
simplified case ofs5t was used. This was a convenien
rather than a necessity. In this Appendix, the case ofsÞt is
briefly addressed by way of an example, namely, termTVIaiii .
From a direct calculation standpoint, the case whensÞt

FIG. 4. FTC diagramTVIaiii for the case whentÞs and t.0.
~a!, ~b! s2t,t. Here, the accumulation over thet2 interval on
channel 1 is restricted in that the second tick mark on thet timeline
can be no closer to the end of the timeline thant2s1t. Full ac-
cumulation over thet2 interval on channel 2 is allowed.~c! s2t
,t. In this case, full accumulation is allowed over thet2 interval
on channel 1 but is restricted on channel 2. The second tick mar
the s timeline can be no closer thans2t2t from the end of the
timeline.
2-11
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does not need to be treated in any special manner. It a
naturally as in Eq.~13!. From a FTC diagram standpoin
however,sÞt has topological significance. Direct predictio
of the expression represented by the diagrams involves
sidering two cases fort.0 and two cases fort,0. We shall
focus ont.0 for FTC diagramTVIaiii . Here, one must con
sider the case whens2t,t and the case whens2t.t.
Figure 4 illustrates these two cases. Figures 4~a! and 4~b! are
both cases whens2t,t. One sees that the accumulatio
over the t2 interval on thet timeline is effected bysÞt.
Sincet exceedss2t, accumulation over thet2 interval on
the s timeline remains full. Thus, one predicts, fors2t,t
andt.0,

TVIaiii 5E
0

`

dt2E
0

`

dt1R1~ t21t2s1t; t1!R2~ t2 ; t112t!.

~B1!
d

e

-

02614
es

n-

Figure 4~c! shows the case wheres2t.t. In this case, full
accumulation can take place over thet2 interval in the t
timeline, but accumulation over that same interval on ths
timeline is diminished. So, for thes2t.t.0 situation one
predicts

TVIaiii 5E
0

`

dt2E
0

`

dt1R1~ t2 ; t1!R2~ t21s2t2t; t112t!.

~B2!

As with the s5t case, the collection of expressions can
shown to be equivalent to Eq.~13! by explicitly considering
the causal nature ofR and making simple changes of var
ables as was done in Appendix A.
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